M1.(a) (i) Clear statement that for isothermal pV =constant or $p_1V_1 = p_2V_2 \checkmark$ Applies this to any 2 points on the curve AB \checkmark e.g. $1.0 \times 10^5 \times 1.2 \times 10^{-3} = 4.8 \times 10^5 \times 0.25 \times 10^{-3}$ 120 = 120 Allow pV = c applied to intermediate points estimated from

graph e.g. V = 0.39 × 10⁻₃, p = 3 × 10₅

(ii)
$$W = p \Delta v$$

= 4.8 × 10⁵ × (0.39 - 0.25) × 10⁻³
= 67 J \checkmark

(b)

	Q/J	W/J	$\Delta U / J$	
process $A \rightarrow B$	-188	-188	0	~
process $B \rightarrow C$	+235	(+)67	(+)168	~
process $C \rightarrow A$	0	+168	-168	~
whole cycle	+47	+47	0	~

Any horiz line correct up to max 3 Give CE in $B \rightarrow C$ if ans to ii used for W If no sign take as +ve

max 3

1

- (c) $\eta_{overall} = 47 / 235 = 0.20 \text{ or } 20\%$ \checkmark
- (d) Isothermal process would require engine to run very slowly / be made of material of high heat conductivity ✓
 Adiabatic process has to occur very rapidly / require perfectly insulating container / has no heat transfer ✓
 Very difficult to meet both requirements in the same device ✓
 Very difficult to arrange for heating to stop exactly in the right place (C) so that at end of expansion the curve meets the isothermal at A ✓

1

2

Do not credit bald statement to effect adiabatic / isothermal process not possible - must give reason Ignore mention of valves opening / closing, rounded corners, friction, induction / exhaust strokes wtte

max 2 **[9]**

2

3

2

M2. (a) (i)
$$p_2 = p_1 (V_2/V_1)^{1.4} = 1.0 \times 10^5 (2.1/1.2)^{1.4} \checkmark$$

OR $1.0 \times 10^5 \times (2.1 \times 10^{-5})^{1.4} = p_2 \times ((1.2 \times 10^{-5})^{1.4} \checkmark$
 $p_2 = 2.2 \times 10^5 \text{ Pa } \checkmark$

(ii)
$$T_2 = \frac{p_2 V_2 T_1}{p_1 V_1} = \frac{2.2 \times 10^5 \times (1.2 \times 10^{-5}) \times 290}{1.0 \times 10^5 \times 2.1 \times 10^{-5}} \checkmark$$

OR use of $p_1V_1 = nRT_1$ to find n or nR and substitute in

 $p_2V_2 = nRT_2$ to find $T_2 \checkmark$ $T_2 = 360 K \checkmark 2$ sig fig \checkmark

$$(b) \qquad (Q = W + \Delta U)$$

Q = 0 (and W negative) \checkmark So ΔU (= - W) = 1.4 J \checkmark

(c) (slow) compression is (nearly) isothermal / at constant temperature ✓
 greater change in volume needed to rise to same final pressure ✓
 (OR correct p-V sketches showing adiabatic and isothermal processes ✓)
 hence less / piston pushed in further ✓

[10]

M3. (a) (i) use of PV/T = constant $\frac{P_D V_D T_A}{P_A V_A} \checkmark$

$$= \frac{2.5 \times 1.0 \times 300}{1.5 \times 1.0} \checkmark = 500 \text{ K}$$

(ii)
$$Q = \Delta U + W$$

 $\Delta U = 0 \checkmark$
 $Q = W = 173 J \checkmark$

(b) (i) work out =
$$173 - 104 = 69 J \checkmark$$

(ii) efficiency =
$$69/173 = 0.40 \text{ or } 40\% \checkmark$$

 $\eta_{max} = (T_H - T_c)/T_H$
 $= (500 - 300)/500$
 $= 0.39 \text{ or } 40\% \checkmark$

2

rectangle in correct position 🗸

- (d) isothermal process impossible unless very slow or via perfect conductor
 - engine would have to stop for constant volume processes to take place
 - regenerator would lose heat to surroundings (unless perfectly insulated)
 - long time needed for heat to transfer from regenerator to working fluid
 - regenerator would need to be very large/large surface area for heat transfer to take place quickly accept other sensible suggestions do not accept 'heat loss to surroundings' or 'friction'

any two 🗸 🗸

M4.(a) ΔQ : (heat) energy supplied to the gas (1) ΔU : increase in internal energy of the gas (1) ΔW : (mechanical) work done by the gas (1)

(b)

	ΔQ	ΔU	ΔW
constant volume		+10.0 (kJ) (1)	0 (1)
isothermal	+6.0 (kJ) (1)	0 (1)	

3

2

4

PhysicsAndMathsTutor.com