M1.(a) (i) Clear statement that for isothermal $p V=$ constant or $p_{1} V_{1}=p_{2} V_{2} \checkmark$
Applies this to any 2 points on the curve AB
e.g. $1.0 \times 10^{5} \times 1.2 \times 10^{-3}=4.8 \times 10^{5} \times 0.25 \times 10^{-3} 120=120$

Allow pV = c applied to intermediate points estimated from graph e.g. $V=0.39 \times 10^{-3}, p=3 \times 10^{5}$
(ii) $W=p \Delta v$
$=4.8 \times 10^{5} \times(0.39-0.25) \times 10^{-3}$
$=67 \mathrm{~J}$ ノ
(b)

	Q / J	W / J	$\Delta U / J$	
process $A \rightarrow B$	-188	-188	0	\checkmark
process $B \rightarrow C$	+235	$(+) 67$	$(+) 168$	\checkmark
process $C \rightarrow A$	0	+168	-168	\checkmark
whole cycle	+47	+47	0	\checkmark

Any horiz line correct up to max 3
Give $C E$ in $B \rightarrow C$ if ans to ii used for W
If no sign take as + ve
(c) $\eta_{\text {oveala }}=47 / 235=0.20$ or 20%
(d) Isothermal process would require engine to run very slowly / be made of material of high heat conductivity
Adiabatic process has to occur very rapidly / require perfectly insulating container/has no heat transfer
Very difficult to meet both requirements in the same device
Very difficult to arrange for heating to stop exactly in the right place (C) so that at end of expansion the curve meets the isothermal at A

Do not credit bald statement to effect adiabatic / isothermal process not possible - must give reason
Ignore mention of valves opening / closing, rounded corners, friction, induction / exhaust strokes wtte

M2. (a) (i) $p_{2}=p_{1}\left(V_{2} / V_{1}\right)^{1.4}=1.0 \times 10^{5}(2.1 / 1.2)^{1.4}$
OR $\quad 1.0 \times 10^{5} \times\left(2.1 \times 10^{-5}\right)^{1.4}=p_{2} \times\left(\left(1.2 \times 10^{.5}\right) 1.4 \checkmark\right.$
$p_{2}=2.2 \times 10^{5} \mathrm{~Pa}$
$T_{2}=\frac{p_{2} V_{2} T_{1}}{p_{1} V_{1}}=\frac{2.2 \times 10^{5} \times\left(1.2 \times 10^{-5}\right) \times 290}{1.0 \times 10^{5} \times 2.1 \times 10^{-5}}$
(ii)

OR use of $p_{1} V_{1}=n R T_{1}$ to find n or $n R$ and substitute in
$p_{2} V_{2}=n R T_{2}$ to find T_{2}

$$
T_{2}=360 \mathrm{~K} \checkmark \quad 2 \text { sig fig }
$$

(b) $\quad(Q=W+\Delta U)$

$$
Q=0 \text { (and W negative) }
$$

So $\Delta U(=-W)=1.4 \mathrm{~J}$
(c) (slow) compression is (nearly) isothermal / at constant temperature greater change in volume needed to rise to same final pressure (OR correct p-V sketches showing adiabatic and isothermal processes \checkmark) hence less / piston pushed in further

M3. (a) (i) use of PV/T = constant

$$
\begin{aligned}
& \frac{P_{D} V_{D} T_{A}}{P_{A} V_{A}} \\
& =\frac{2.5 \times 1.0 \times 300}{1.5 \times 1.0} \quad \checkmark=500 \mathrm{~K}
\end{aligned}
$$

(ii) $Q=\Delta U+W$
$\Delta U=0 v^{\circ}$
$Q=W=173 \mathrm{~J}$
(b) (i) work out $=173-104=69 \mathrm{~J}$ マ
(ii) efficiency $=69 / 173=0.40$ or 40% v

$$
\begin{aligned}
\eta_{\max } & =\left(T_{H}-T_{c}\right) / T_{H} \\
& =(500-300) / 500 \\
& =0.39 \text { or } 40 \% \checkmark^{\prime}
\end{aligned}
$$

(c)

rectangle in correct position \downarrow
letters correct place \checkmark (arrows optional)
(d) - isothermal process impossible unless very slow or via perfect conductor

- engine would have to stop for constant volume processes to take place
- regenerator would lose heat to surroundings (unless perfectly insulated)
- long time needed for heat to transfer from regenerator to working fluid
- regenerator would need to be very large/large surface area for heat transfer to take place quickly
accept other sensible suggestions
do not accept 'heat loss to surroundings' or 'friction'
any two $\sqrt{\prime}$

M4.(a) ΔQ : (heat) energy supplied to the gas (1)
ΔU : increase in internal energy of the gas (1)
ΔW : (mechanical) work done by the gas (1)
(b)

	ΔQ	ΔU	ΔW
constant volume		$+10.0(\mathrm{~kJ})(1)$	$0(1)$
isothermal	$+6.0(\mathrm{~kJ})(1)$	$0(1)$	

